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Abstract

-We consider a system consisting of a rigid body to which a linear extensible shear beam is

attached. For such a system the Energy-Casimir method can be used to investigate the stability of

the equilibria. In the case we consider, it can be shown that a test for (formal) stability reduces

to checking the positive definiteness of two matrices which depend on the parameters of the system

and the particular equilibrium about which the stability is to le ascertained. -
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1. Introduction

We consider a rigid body to which a long, flexible appendage is attached. A coordinate

reference frame is fixed in the rigid body with the origin at the center of mass of the rigid

body. The flexible attachment is assumed to lie along the second coordinate axis when the

configuration is at rest. ( see figure 1.) The equations of motion for such a configuration, under

suitable assumptions and with the appendage modeled as a linear extensible shear beam, are

derived by Krishnaprasad and Marsden in [2]. In deriving the equations of motion they use

Hamiltonian methods in the context of Poisson manifolds and reduction. (see [2] for the

explicit formula for the Poisson brackets involved.)

If we assume that the momentum of the system which arises from the appendage rotating

with the rigid body is negligible, then our Hamiltonian is of the form

(Jifm(a)ff 2  K 'BrH=5 p ]p I da+ 1  K or .d (1.1)
I Jo P 2 Jo 78 T

We assume that J is the inertia matrix of the rigid body and that P0 is the uniform mass per

unit length of the attached appendage of length 1. The reduced phase space is coordinatized

at any time by w, the convected angular velocity vector of the rigid body; r(s), the convected

displacement of the shear beam at a point a, 0 s * 1; and m(s) the momentum density of

shear beam at the point .. The vector p is the body angular momentum vector of the rigid

body, thus p - Jw. Finally, K is the diagonal matrix of elastic coefficients.
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In our investigation we are interested in the stability of the system about equilibria points.

These equilibria will satisfy,

0 =Jwx w+ x Br rf tx 2 r x Br s 12
0=Jwxw~ax =0 -r~~K 2  -xK d (1.2)I

0 =- +r X w (1.3)
P0

0-K xm2w (1.4)

Two boundary values are associated with these equations,

[ = e2, and r = [ = a (1.4)

Br L , ]ad ~

In [2], a stability algorithm based on the Energy-Casimir method was applied to a spe-

cific family of equilibria (see section 4.2 below). The essence of the stability algorithm is to

recognize that the relevant Poisson structure {., • } admits nontrivial Casimirs i.e. functions

F that Poiaaon-commute with any function of the phase space. It follows that these are also

conserved quantities for the dynamics of (1.1). Specific Casimirs C# may be found such that

the relative equilibria defined by (1.2) - (1.4) are critical points of (H + C#) on the reduced

phase space. Formal stability follows from establishing definiteness conditions for the second

variation DI(H + C#) at the relative equilibria. To establish rigorous nonlinear stability, one

has to carry out certain convexity estimates as in [2].

The purpose of this paper is to establish a aye tematic procedure for carrying out the formal

stability step for arbitrary equilibria satisfying the equations (1.2) - (1.4). This has useful

applications in the engineering context where the model at hand represents the mechanics of a

spinning spacecraft with a flexible attachment (such as a boom for carrying instruments or an

antenna). See [2] for related remarks and references. The procedure derived here recovers the

results of [2] when applied to the specific example considered there. (see section 4.2 below.)
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2. Computation of the First and Second Variations

In this section we compute the first and second variations of the Hamiltonian plus the

Casimir function, H + C#. From the previous definitions of these we know

H iI, 1M1 ft Br or
£1=P 0 d0 1ij K -~-da (2.1)

and the Casimir function may be taken to be

C#= 1(lp + Jr X M d8112). (2.2)

We will denote the first and second variations by D(H + C#), and D2 (H + C#). Note that

because of the distributed nature of the system we are dealing with we will need to compute

variational derivatives instead of ordinary gradients.

2.1. Computation of the First Variation

For the integrals in the Hamniltonian we consider variational differentials defined by

Df() lmf( +c)-f()=J 7  f .6zda. (2.3)

Thus, letting

f2 = IM(a)112 da, (2.4)

then

IDf2 (M)= M!-6m ds. (2.5)

Similarly, let

fs(r) 10jK F . To do (2.6)

fs r~ J 10xT 188. (2.7)

If we integrate this equation by parts with the boundary conditions 6r(t) =6r(O) =0, we get

Df(r) IjK 4 02 6r da. (2.8)

4



For the integral term in the Casimir function we are taking variational derivatives of a cross

product term. If we define

1all 2 = lip + r x m d112, (2.9)

then

D1IOI12 = 2a (6p + r x m de + j6r x md). (2.10)

If we combine all of the above we get the expression for the first variation

D(H + C#) = J-p.p + .-m Sm ds- K -C12.rdo

+ #'(1a112) .(6p + Jr x mds + f6r x mde). (2.11)

2.2. Computation of the Second Variation

For the second variation, the starting point is the expression for the first variation. The

terms arising from the original Hamiltonian are straight forward to compute, they are

D(J-'p • 6p) = J-1 p -6p, (2.12)

D( I.m.6m ) = 1 m. 6m ds, (2.13)

f a _2 r IK 126r
D( K 0-2. 6r de) = I X - r 4d. (2.14)

Note that we can use the boundary conditions on 6r to get
fK 2 6r I £ 86r 86r

J-2 . rde = J0 . CIS de. (2.15)

Next we consider the component which arises from the Casimir function which we added to

the Hamiltonian. From the first factor of this term we compute,

DO'(a) = 201 (Ilail2) 0. (6p + zr x 6mds + j6r x m ds). (2.16)

From the second factor of the Casimir term we compute

I' ID(a -(6p + f rx m d.+Jfa6r xmd))

Ip + r x im de + J r x m dell'

I' I'
+ 2(p + fr x m-d.). (o r x 6m do). (2.17)

IK5



We use the above to get the expression for the second variation

2oe 1 1K r -r
D (H + CO) = J-6p. 6 + -6m. 6mds + K - do

P0 Jo a8 a

+*#'(IlaI'){ p+ jr x md+ 6r x md ))'I' I
+2(p+ Jr x mds). (j r x bm do)}. (2.18)

3. Computation of a Stability Criterion

The conditions which assure that the first variation D(H + C4) at an equilibrium is zero

are

0,010eII')e = -w 9, (3.1)

0I(II& j12) ce x re = -Ime, (3.2)
Po

.0(1I0C112) &e x m e = - K- 2, , (3.3)
a.2

where we = J-pC, and

of = pe + Jre x m do. (3.4)

We use the superscript c to denote evaluation at an equilibrium. If we dot (3.1) with We we

have
#,(lliaiI,) = w *"i0I014II2 (3.5)

If we evaluate the first variation at an equilibrium, incorporating the above, then we can derive

conditions which assure the stability of the equilibrium. In the following sequence of steps we

demonstrate how this is done.

Step 1 : Evaluate the Second Variation at an Equilibrium

Recall the second variation. If we use the above to substitute for O'(lW1ai') in this ex-

pression and rearrange slightly we find that

o1 f air 86 r
D'(H + C#)(p,^,.) = J-p • bp + -Sm' 6m d+ o  K - -18IoPO f0  a. a.
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l Ip r+ re x bmds+ jr x m d s ll

0 '
-2 " ' .( br x bm da)

+ 2 O"(Iet'1) (a. (bp + r x 6m da + J r x mede))2,

(3.6)

which corresponds to expression (5.5) in Krishnaprasad and Marsden [2]. In that paper, 0 is

required to satisfy the condition:

"( 'I = 2 Ill4 (3.7)

which is consistent with (3.5). In the following development we impose no conditions on

"(I110e12) at this time.

Step 2: Expand Terms Containing 6p

We first note that the fourth and sixth terms in (3.6) can be expanded. For the fourth

term we have

W 1 a 16p + re x mdee+ r x me di2

we 2
6 p. 8 p

-2 w ap. re x bm ds + br x me ds)
110e112 Jo' Jo

.i-l r' x bm da + br x med4l' (3.8)
110~.11 IlJ ex8ma j

while for the sixth term

2 )"1(1106112) ( . (5p + re x Emda + f br x m" ds))2

= 2e"(ll&*ll)(e . 6p)2

+ 40"(11O11)(0 . bp) (a0. (J re x im de + j r x medo))
Io fs

+ 204(I1adI2)(t • (J f x 6md. + j 6Tx me ds))2

(3.9)
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Step 9: Collect Terms Containing 6 p

Now, collect together terms in which the quantity 6p appears. Our expression for the

second variation at an equilibrium can then be written

D 2(H+C ) C- p wp n--(bp • 6p + 26p r e x bmds+ 6r x meds))

+ 2 "(11ne112) {(( . p)2 + 2( • 6p) ( re x m ds + f r x m ds)))]

we . te .. 1o o

r x md8 Jo x dsxL d+ 8rx Ctjj

+ "(11ae112)(" ( r e x 6mda+ br x med.)) 2

- 2 e a. ( 6r x bm ds) + -m-m. ds + K a-s de

(3.10)

Step 4: Complete the Square

The term in square brackets which contains the 6p terms can be rewritten[ (J-1  11 * *I+ "(11e112)a 0 a)6p. 6p-

+ 2(- 1I+201"(1aeI2)ae ®0 )&p. re x bmds+ 6r x me ds)
(3.11)

In this expression we use 0 to denote the tensor product and I the identity. Note that a e On e

is a tensor of rank 2. We can complete the square for this expression provided the quantity

J- W .'I + 20"(1a'1)Se ®e (3.12)

11e 112
has an inverse.

We next assume this inverse exists and define the two symmetric matrices M and N by,

MTM = J- w *. * I+ 20"(h1ceI12),e C

II10112
-=J; 1  (3.13)

NTM = e .I + 2 4"(1104II 2)ne a

8 .(3.14)



Completing the square for the term in brackets we now get[ ] /oIMS +Njrsm '
• I ]bp +I N(z re x b m da + 10 r x m* da,)II

- NTN( re x Sm da + Sr x m d)- (Jr' x bmds + Sr x m' d)

(3.15)

The term in braces is bounded below by a perfect square when NTN > 0. For this to be the

case we need to assume that the inverted matrix, J-' is positive definite, in general it need

not be. Note that this assumption will impose conditions on .0,(1I&e112). The requirements

on the parameters in this matrix to assure it is strictly positive definite will be expressed in

the form of inequalities. These inequalities will be the first conditions that we need to assure

stability.

Step 5: The Reformulated Second Variation

The second variation at an equilibrium is thus of the form

D 2 (H + C#) = (square)

- N TN( re x Sm ds + J Sr x me de)

e (m re x bm d8 + r x m' ds)

+-4P(III zr x med +o I r x m' d) J1m

+ 20"(110,11=)0 a . (z re x binds+ 10 r x m'ds)

(j re x Sm de + 1 r x m ds)

-2,,.o, " . ( ir x m do) + 1rS. bmdo + K.r
lia-III Jo oPO o 498 B

(3.16)

Where we note that

NTN (I i + 2e#(lie11')*6 ® 0)

9



P I +- 20" 2) &S a I+ 2'(l'll')a11 2a)

=Q.Jeqe (3.17)

Step 6: Collect Integrals of Croa Product.

Collecting terms containing the integrals of cross products the second variation can be

written

D(H + CO) = (square)

- (QcJeQe - Q)(] r x 45md + br x med.)

*(J r ex bm do + jr x m' ds)

.e ae I i 8r ar
-2 -_at.( b x bm do) + -6m 6md +l K -. -do

h1ail1 JO o J0o as8 as
(3.18)

Step 7: A Vector Identity

Observe that a simple vector identity enables us to write

2 a jj e.( 0 r x 6mda) = 2 a x b~xr).-8m do

= 2 j b6mTS((0 1 101104 )6r da (3.19)

where we have used the skew-symmetric matrix S(x) associated with the cross-product

r0 -23 21
S(x) IZ3 0 -zi j(3.20)

1-Z2 X1 0J

Step 8: A Quadratic Form

Now define the symmetric matrix

R! ! Q.J.Qe - Q* (3.21)

We will see below, that an eigenvalue estimate (3.23) relies on having R nonnegative definite.

We thus require that conditions on the paramneters of the problem and 0"11a'112) hold such

10"



that J,-1 defined in (3.13) is positive definite and R defined in (3.21) is nonnegative definite.

The latter will assure that R has a square root RIP2 . We will examine these assumptions

again in remark 2 below.

Expanding the second term in (3.18), we can re-express it as a quadratic form,

R (j0re x bm d+ f 6r x m'd8).- (f r' x in d +j6r x m'd8)

=JR(S(r(s))6m(s) - S(m'(s))6r(8)). (S(r'(o))bm(a) - S(m'(o))br(or)) dda

f M ()bT T(re(8) (cr) )- m e~a) m(a) d8daJo a) Im(a ] ST(a() IS bra)e

=~~ j m() r(a) I A' (8)A Ir [m(%)] d8 da (3.22)

We now can find a lower bound on the above. The bound we want is obtained from an

eigenvalue inequality which we introduce by way of the following lemma

Step D: An Eigenvalue Inequality

Lemrna(3.1): Let A(8) E L 4Xf(O,t) , and x(s) E L"(0,1) then

I: xTa)T~)A~~xu) jX ()f

fofo X's)'(8A~~x~r)dads < 1A T 8 foX 2 (or) do~x (a) d8, (3.23)

where X'(8) is the maximum eigenvalue of A7(a)A(s).

Proof: Let 11 - 1 denote the standard norm in Euclidean space and also the induced matrix

norm associated with it. Then

j~ o jxT()AT()A(r)x(r) dads 5 fo fo IXT(a)A T (i)A(v)x(a) Idu de

:5 ff f'IIA(a)x(a)II IIA(v)x(a)II dcd.

where we have used IIA(iv)x(8)II 5 IIA(s)II Ilx(a)II. We can now use the Schwarz inequality

(fj IA(ev)II 11x( p)II &.)2 f IIA()1 de j Ilx(e)11 48
11f

I 11 1 1 1 I 111



Finally noting that the value of IJA(a)II is simply the square root of the maximum eigenvalue

of AT(s)A(e) establishes the result. 1

If we let A(s) be the maximum eigenvalue of

[, -" [ ST (re(,))RS(re(s)) -S T (re(e))RS(me(s)) 1

= -S T (me(s))RS(re(s)) S T (me (s))RS(me(s)) I

and let A2 = fA 2(s) ds then we have by way of lemma 3.1 a lower bound on the second

variation

D 2 (H + C# )(,,me) 2! (square)

j 2 fo bmTbm ds - j2 fo br T6r ds

I (ae C 0 0e )We
-2 J 6mTS( 1)C )6r da

+ f mTbm ds + . (3.25)
.'PO .0 a8 88

Step 10: A Poincar6 Type Inequality

If we assume that K is diagonal and use a Poincari-type inequality

J 8a6r r I
0 K -.- d8 > c K6r. 6r ds, (3.26)

with c = (b) 2 , then the second variation can be bounded below as

D 2 (H + C#)(p,w.,n-.) ( equare )

- 41 mT m ds - A fo j rT6r da

-2 mTS((&0'),'e ) r da

+ J I 6MTbmda + C LrTK6r ds (3.27)
PO

Step 11: Rewrite The Lower Bound

We can reformulate the lower bound in a clearer form as follows

D 2 (H + C#) ,.,.e. 2! (square)
_L1.._.1 2  _S(06 eW ) 1

+10 [ST(W *we) cK-11 2  6r [~ 6rJ a (.8

12
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4.]

If we define the matrix

D(pe,re,me) = (3.29)

[-S TM;.eW') cKT~ 6 j2]

then we can state the following theorem ;

Theorem(3.2): If the matrix R = QJCQ - Q, defined in (3.21) exists and is nonnegative

definite, J, defined in (3.13) is positive definite, and the matrix D defined in equation (3.29) is

positive definite, then the system described by equations (1.2)-(1.4) is nonlinearly (formally)

stable at the equilibrium point (pC, re, me). I

Remark 1: This result establishes only formal stability, since it is based on the the definiteness

of second variation. To establish rigorous stability of the nonlinear system one generally needs

to examine convexity estimates as is done in [2].

Remark 8: Note that if Q.-I exists and we use the matrix inversion lemma [4, p.656] we obtain

the following

(Q-I + j)- = Q. _ Q.J.Q.

= -R (3.30)

Recall that we already have an assumption of nonnegative definiteness on R. Thus we need

to specify conditions on the parameters and 0"(1jae12) such that

J1+ Q, > o0s~x

(J + Q;)- o (3.32)

which are the same conditions as R 2 0 and J. > 0. In the examples of the next section Q6

is singular.

Remark S: A better result can be had by observing that AT(e)A(s) is frequently in the form

of a block diagonal matrix

Ar(*)AI(s) 0

AT (@)A(s) = (3.33)

0 A13(#)Ak(,)

13



where 0 < k < 6 and because of the semidefiniteness of ATA(s) some of the diagonal blocks

may be zero. If we let A?(a) be the maximum eigenvalue of AT(a)Aj(s), 0 < i < k then we

can define

-sT(W now cK 0 1c

Thus, if the conditions of theorem (3.2) are satisfied and also the matrix D' defined in equation

(3.34) is positive definite, then the system described by equations (1.2)-(1.4) is (formally)

nonlinearly stable at the equilibrium point (p', r, me). In theorem (3.2) this will mean the

special choice A2(a) = max{A2(), .... (8)).

4. Some Examples

In this section we apply theorem (3.2) to specific equilibria of (1.1) - (1.3). We will assume

that that the linear extensible shear beam lies along the same direction as the second principal

axis of inertia of the rigid body. From geometric considerations the position of the shear beam

will cause the principal axes of the rigid-body-shear-beam configuration to lie in the same

directions as those of the rigid body. In this case the addition of the shear beam will have

the effect of increasing the moments of inertia about the first and the third principal axes.

Because the linear extensible shear beam cannot deflect laterally the principal axes of the of

the configuration remain fixed for any longitudinal extension of the shear beam. Thus, for

this configuration there are three axes about which the equilibria can exist. These axes will

correspond to the three principal axes of the rigid body.

4.1. A Trivial Equilibrium

The simplest case to be considered is when the rotation takes place about the axis along

which the linear extensible shear beam lies. In this case the equilibrium will be

2a =* 62 (4.1)

r- ( 2 + .) 62, 0 < 8< t (4.2)

m= 0 (4.3)

14



This describes the linear-extensible-shear- beam being unstretched.

What follows is a special case of the second variation computed in Step I of the previous

section. In this and the following example we will assume j6"(jjaejj2) is the same as in [2J, thus

recall from (3.7) that if this is the case then

And the two quantities, J-', and Qwhich we define in Step 4 are

j -1 = ®a (4.4)t lo01 2  1101J12

Qe WeI -O ;068) (4.5)

For our example, if we first compute

a' = j22 w2 '&2 (4.6)

then

a eT W = j2 2 (w;)2  and &eTo 2 2(W) 2  (4.7)

from which we immediately compute

cgaeT 1 (4.8
1 ;e T.I

1 0 1](48

and finally,

J; 0 322 0.S (4J

Q,2] (4.10)

For J. to be positive definite we require j22 > fil, and j22 > j33. This will assure positive

elements along the diagonal in the inverse above.

P-Irfe- r-2r~r- .A % ll15



Thus, the quantity QCJ.Qe which appears in the reformulated second variation of Step 5

will be,

=( (T (I 12 (I_.) ((e )aeeT\

, -a Ta -  a T -ae,)  I(a T e)2  a T ))

([ o oI oEl([ Oo3o2])o
322

O r 22 0 0 0 00 o 0 00

oL' 'O ' ' 0 o,0 (4.1)

where we have used equation (3.17) and the fact that 3. and Qe are diagonal.

We also need the skew symmetric matrix which appears in Step 7. Thus, we compute
s2221[o2].

Now we compute R, which is defined in Step 8.

R = Q.J. + Tw(-

0 0 0 0

: _ o (4.''o)

0 0

0 0 1

ST(r)RS(r)= I -0 0 (4.14)

0 0 - r'J

T (r')Rs ( m ) = 0 (4.15)

ST(m')RS(m") =0 (4.16)

16
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These matrices are used to form the matrix AT(a)A(s) in (3.34), note that it has only the

two nonzero elements (computed in (4.15)). These correspond to the first and second diagonal

elements. Hence, AT(8)A(8) is a diagonal matrix and the nonzero eigenvalues are these two

elements. As a consequence we will use the modified bound described in Remark 8. Thus, the

eigenvalue inequality is easily obtained.

After using the Poincark inequality of Step 10 we proceed to the final step and construct

the D' matrix in (3.34)

1 2 f ds 0 0 0 0 
To i22388s j 0 T 2

0 0 0 0 0
490

D -f0 fo r 2 d
o' 00 J 311 ( W)

2 k. 0 0

0 0 0 0 (72') 2k, 0

-2 0 0 0 1 (r)2k.
(4.17)

To assure that the D' matrix is positive definite we require

j22 - il > PoJ 2 d, (4.18)

j22-j33 >POj 2 ds (4.19)

and also, fir 2 /)( 1 2 )
1 322 rs d () k. > 1W)2 (4.20)

Ir). >(W
(z ~ 1, J,.2 do) 2k > () (4.21)

Physically the first two conditions are classical stability conditions on the stable axes of rotation

for a rigid body. The term on the right is the additional inertia due to the flexible appendage

which adds inertia about both the first and third axes. The second two inequalities are

conditions on the admissible rotation rates of the configuration. They have an interesting

physical interpretation.

17



4.2. A Non-Trivial Equilbrium

For the second example we will consider rotations of the rigid- body-shear- beam configu-

ration about the first or third principal axes of inertia. We will examine the case when the

rotation is about the first principal axis of inertia, rotations about the third axis are similar.

This corresponds to the example in Krishnaprasad and Marsden 121.

we = WC1(4.22)

r 9(s) = C. +a A ) 2 (4.23)
Cos( IiWet)

= ow sin(\/w. +Cos(,'j1Wr.
Eme(s) =pw A+a )i3 (4.24)

In these equations we have 0 < 8 < f. For simplicity we will denote the nonzero element of r

as r'2, and that of m as m3.

We first compute

Ck lw,+ r~m*3dae1  (4.25)

thus

ae TWe = (,e f jrm*d8) w 1 (4.26)

a *T C = (i11WO + ft r*m3'd)2 (4.27)

Subsequently we will denote the first element of a by a,. We now compute

10 0 01

and finally, J;' and Q. defined in SteP 4 are

0 01
J1 0 =-~i 0 I(4.29)

3820

Q . 0 (4.30) f



For J -1 to be positive definite we require

Ot > j22w; and 01 > j33w (4.26)

These conditions will hold if il > j22, and ill > jss and will assure positive elements along

the diagonal in the inverse above. These conditions are the same as (5.10) in 12].

Then from equation (3.17) we have

gkeT ~e O T ~ leT) O oe,2

'1,T,) *eT~
( (o °0o °o °  o)

0 0 0 0 01

2[0

22 0 2

0 0 -0 0 0
*fl @-222WI 0 1

13 11 j22-W, ] (4.31)

The skew symmetric matrix of Step 7 is

s(- ')= -0 (4.32)

Now we compute R as defined in Step 8,

R =Q,JSQ. + -&T CaeaesTae (I - .Te)

0 b22  0+ 0 0
o 0 J 0 1 0i

1 0C
0 0 01

= -Y22 0 (4.33)

0 0 1ss

where we have

o2 and '7a = wf (4.34)
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Note that these are not the same as the "yl, and -y2 terms which appear in [2].

We can now compute

" ssr;2 0 0]

S T (r')RS(r*) = 0 0 (4.35)
10 0 0

ST (r*)RS(m) = 0 (4.36)

ST(m*)RS(m) = 0 0 0 (4.37)
0

From this we can compute the matrix AT(s)A(s) in (3.24), note that it has only two nonzero

elements. These correspond to second and fourth diagonal elements. Hence, AT(S)A(s) is

a diagonal matrix and the nonzero eigenvalues are these two elements. As in the previous

example we will use the modified bound described in Remark S.

We can construct the D' matrix in (3.34)

-y33sfor2da 0 0 0 0 0

0 0 0 -
1 0

D 0 0 P 0 e1 0 (4.38)
0 0 0 (12w)k 7 2 2 f tm d8 0 0

o 1w 0 (1 ) 2kv 0
o -we, 0 0 0 (,o

To assure that the D' matrix is positive definite we require

> PO T2@2 dL (4.3)
'.733 1

() >k3 1 fM2 ds (4.40)

and

( 0'-) > (w0) (4.41)

k/(W2 > (W;)2 (4.42)

These conditions are exactly those of (5.14) in Krishnaprasad and Marsden and they assure

stability about the equilibrium which also satisfies (4.26).
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Finally a remark about the difference between [2] and our development. If we integrate the

matrix we call AT(B)A(s) then the elements of the integrated matrix would correspond to "12,

and "yj in the paper of Krishnaprasad and Marsden. This suggests modifying the procedure in

the previous section to look at the eigenvalues of the integrated matrix rather than integrating

the elgenvalues.
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